
An MPI/OpenACC Implementation of a
High-Order Electromagnetics Solver
with GPUDirect Communication

Journal Title
XX(X):1–13
c©The Author(s) 2013

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Matthew Otten1,3, Jing Gong2, Azamat Mametjanov3,
Aaron Vose4, John Levesque4, Paul Fischer3,5, and Misun Min3

Abstract
We present performance results and an analysis of an MPI/OpenACC implementation of an electromagnetic solver
based on a spectral-element discontinuous Galerkin discretization of the time-dependent Maxwell equations. The
OpenACC implementation covers all solution routines, including a highly tuned element-by-element operator evaluation
and a GPUDirect gather-scatter kernel to effect nearest-neighbor flux exchanges. Modifications are designed to make
effective use of vectorization, streaming, and data management. Performance results using up to 16,384 GPUs of the
Cray XK7 supercomputer Titan show more than 2.5× speedup over CPU-only performance on the same number of
nodes (262,144 MPI ranks) for problem sizes of up to 6.9 billion grid points. We discuss performance enhancement
strategies and the overall potential of GPU-based computing for this class of problems.

Keywords
Hybrid MPI/OpenACC, GPUDirect, Spectral Element Discontinuous Galerkin

Introduction

Graphics processing units (GPUs) together with central
processing units (CPUs) offer the potential for high compute
performance and high sustained memory bandwidth at
substantially reduced costs and power consumption over
traditional CPUs. As such, they have become prevalent in
major computing centers around the world and are likely
to be at the core of high-performance computing (HPC)
platforms for at least another generation of architectures.
In this paper, we consider a multi-GPU implementation of
the computational electromagnetics code NekCEM, which
is based on a spectral-element discontinuous Galerkin
(SEDG) discretization in space coupled with explicit Runge-
Kutta timestepping. Our objective is twofold. First, we
seek to develop a high-performance GPU-based operational
variant of NekCEM that supports the full functionality
of the existing MPI code in Fortran/C. Second, we
use the highly tuned multi-GPU and multi-CPU codes
for performance analysis, from which we can identify
performance bottlenecks and infer potential scalability for
GPU-based architectures of the future.

NekCEM, the vehicle for our analysis, supports globally
unstructured meshes comprising body-fitted curvilinear hex-
ahedral elements. NekCEM’s SEDG formulation requires
data communication only for flux exchanges between neigh-
boring element faces and not the edges or vertices and thus
has a relatively low communication overhead per gridpoint.
The restriction to hexahedral (brick) elements allows the
discrete operators to be expressed as efficient matrix-matrix
products applied to arrays of tensor product basis coeffi-
cients. The basis functions are Lagrange interpolants based
on Gauss-Lobatto-Legendre (GLL) quadrature points, which
provide numerical stability and allow the use of diagonal
mass matrices with minimal quadrature error.

We use OpenACC (Open Accelerator) as a strategy for
porting NekCEM to multiple GPUs, because of the relative
ease of the pragma-based porting. OpenACC is a directive-
based HPC parallel programming model, using host-directed
execution with an attached accelerator device (openacc.org
2011). We utilize OpenACC compiler directives to specify
parallel loops and regions within existing routines in
NekCEM that are to be targeted for offloading from a
host CPU to an attached GPU device. In our programming
model, the CPU host initiates the execution of the code
and distributes data between CPUs. Before starting time-
advancing iterations, each CPU executes data movement
from the host CPU memory to GPU memory only once,
and computations are performed fully on GPUs during
the timestepping iterations. At the completion of the
timestepping iterations, the host CPUs transfer GPU results
back to the hosts. In this work, we tuned our gather-scatter
kernel using GPUDirect, which enables a direct path for
data exchange between GPUs (Nvidia 2015). This results in
completely bypassing the host CPUs so that no significant
data movement occurs between CPU and GPU during the

1Department of Physics, Cornell University, Ithaca, NY 14853
2KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
3Mathematics and Computer Science, Argonne National Laboratory,
Lemont, IL 60439
4Cray’s Suercomputing Cener of Excellence, Oak Ridge National
Laboratory, Oak Ridge, TN 37831
5Department of Computer Science & Department of Mechanical
Engineering, Univerisity of Illinois at Urbana-Champaign, Champaign, IL
61801

Corresponding author:
Misun Min, Mathematics and Computer Science, Argonne National
Laboratory, Lemont, IL 60439
Email: mmin@mcs.anl.gov

Prepared using sagej.cls [Version: 2013/07/26 v1.00]

2 Journal Title XX(X)

timestepping iterations, unless checkpointing is needed. Our
performance does not study checkpointing because it is
typically not a bottleneck in production simulations.

We comment that this work parallels other GPU +
spectral-element developments, particularly the OpenACC
work of J. Gong and collaborators at KTH (Markidis et al.
2015) and OCCA-based efforts of Warburton and coworkers
at Rice (Medina et al. 2013). We also note the analysis
by Klöeckner et al. (Klöeckner et al. 2009) of high-order
nodal discontinuous Galerkin methods on GPUs for solving
the Maxwell equations that are based on Nvidia CUDA
programming model, using tetrahedral elements.

The remainder of the paper is organized as follows. We
begin with an overview of the NekCEM code, including
the governing equations, discretizations, and computational
approach. We then present details of the key accelerated
computational kernels and of the modified gather-scatter
communication kernel. Following a brief overview of
several target platforms, we provide performance results
and analysis that includes discussion of profiling and
power consumption considerations. We conclude with a few
summary remarks.

Code Description
NekCEM is an Argonne-developed computational electro-
magnetics code that solves the Maxwell, Helmholtz, drift-
diffusion, Schrödinger, and density matrix equations. In this
paper, we consider the Maxwell equation solver based on
a SEDG discretization in space coupled with explicit high-
order Runge-Kutta (RK) and exponential integration time-
marching (Carpenter and Kennedy 1994; Min and Fischer
2011). It features body-fitting, curvilinear hexahedral ele-
ments that avoid the stairstepping phenomena of traditional
finite-difference time-domain methods (Taflove and Hagness
2000) and yield minimal numerical dispersion because of
the exponentially convergent high-order bases (Hesthaven
et al. 2007). Tensor product bases of the one-dimensional
Lagrange interpolation polynomials using the GLL grid
points and weights result in a diagonal mass matrix with
no additional cost for mass matrix inversion, which makes
the code highly efficient. The hexahedral elements allow
efficient operator evaluation with memory access costs scal-
ing as O(n) and work scaling as O(nN), where n =
E(N + 1)3 is the total number of grid points, E is the
number of elements, and N is the polynomial approximation
order (Deville et al. 2002).

Formulations The central computational component of
NekCEM is the evaluation of the right-hand side in time
advancement of Maxwell’s equations,

ε
∂E

∂t
= ∇×H, µ

∂H

∂t
= −∇×E, (1)

which are shown here for the electric and magnetic
fields (resp. E = (Ex,Ey,Ez) and H = (Hx,Hy,Hz)) in
source-free form. To (1) we must add initial and boundary
conditions as well as auxiliary equations that are relevant
to the physics but ignored in the present context where our
focus is on the compute-intensive kernel. NekCEM follows
standard SEDG formulations (Hesthaven and Warburton
2008; Min and Fischer 2011). In the discontinuous Galerkin

approach, we define the following weak formulation on the
computational domain Ω = ∪Ee=1Ωe with nonoverlapping
hexahedral elements Ωe:(

ε
∂E

∂t
+∇ · FH , φs

)
Ωe

= (n · [FH], φs)∂Ωe , (2)(
µ
∂H

∂t
+∇ · FE , ψs

)
Ωe

= (n · [FE], ψs)∂Ωe , (3)

where FH = es ×H and FE = −es ×E for the canonical
unit vector es(s = 1, 2, 3) with proper test functions φs
and ψs. Here, the integrands [FH,E] := FH,E − F∗H,E are
defined with upwind numerical fluxes F∗H and F∗E given
in (Hesthaven and Warburton 2008). The resulting surface
flux integrands are

n · [FH] =
1

2
((−n× {H})− n× (−n× {E})), (4)

n · [FE] =
1

2
((n× {E})− n× (−n× {H})), (5)

using the notations {H} = H−H+ and {E} = E−E+

(“+” denoting neighboring data). With the relation for the
outward normal vector n = −n+, we use the following
forms in defining the NekCEM communication kernel:

−n× {H} = (−n×H) + (−n+ ×H+), (6)
−n× {E} = (−n×E) + (−n+ ×E+), (7)

where we compute only (−n×H) and (−n×E) on
each element and exchange those data between neighboring
elements with an addition operator. Then we complete the
surface integration with the remaining operations in (4)–(5).

Discretization In our SEDG formulation, we express each
of the six components of E and H as tensor product polyno-
mials on the reference element r = (r, s, t) ∈ Ω̂ := [−1, 1]3

that maps to the corresponding physical domain x(r) =
(x, y, z) ∈ Ωe using the Gordon-Hall algorithm (Deville
et al. 2002). For example, on a single-element Ωe, each
component is expressed as

ue(x(r)) =

N∑
k=0

N∑
j=0

N∑
i=0

ueijkhi(r)hj(s)hk(t). (8)

Here, {ueijk} is the set of basis coefficients, and the functions
hi (including hj and hk) are the one-dimensional Lagrange
interpolation polynomials associated with the N + 1 GLL
points on [−1, 1]. (Note that “t” in (8) is the third coordinate
in Ω̂ and should not be confused with the time variable t. The
distinction will be clear from context.)

Using the expansion (8) for each of the fields
in (2)–(3) and using numerical quadrature, we obtain
a system of ordinary differential equations for the
basis coefficient vectors E = (Ex,Ey,Ez)T and H =

(Hx,Hy,Hz)T having the form

εM
dE

dt
= CH + FH, µM

dH

dt
= −CE + FE, (9)

where M is a diagonal mass matrix, C is a discrete curl
operator, and F is a flux operator that enforces flux continuity
between neighboring elements. This system typically uses

Prepared using sagej.cls

3

Figure 1. Flowchart for a GPU-enabled NekCEM.

4th-order Runge-Kutta or exponential integrators for time
advancement (Min and Fischer 2011). In either case, the
central kernel involves repeated evaluation of the matrix-
vector products on the right side of (9) for the curl
operator C and near-neighbor data exchanges for the flux
operator F. Computing the inverse of the diagonal mass
matrices (ε−1M−1 and µ−1M−1) at insignificant cost and
multiplying those to the added values obtained from the curl
and flux operators complete the spatial operator evaluations.

Derivatives of ue in physical space are computed by using
the chain rule as

∂ue

∂x
=

∂ue

∂r

∂r

∂x
+
∂ue

∂s

∂s

∂x
+
∂ue

∂t

∂t

∂x
, (10)

∂ue

∂y
=

∂ue

∂r

∂r

∂y
+
∂ue

∂s

∂s

∂y
+
∂ue

∂t

∂t

∂y
, (11)

∂ue

∂z
=

∂ue

∂r

∂r

∂z
+
∂ue

∂s

∂s

∂z
+
∂ue

∂t

∂t

∂z
. (12)

All quantities of interest are evaluated at the GLL point
set {ξi, ξj , ξk}, i, j, k ∈ {0, . . . , N}3, in which case one has
an additional 9n memory references and 36n operations
for the curl operator. The evaluation of each of these
derivatives, ∂ue

∂r ,
∂ue

∂s ,
∂ue

∂t (simply uer, ues, uet), can be cast
as a matrix-matrix product involving the one-dimensional
derivative matrix D̂mi := h′i(ξm) ∈ R(N+1)×(N+1) applied
to an (N + 1)3 block of data and requiring only 2(N + 1)4

operations per element. In tensor-product form,

uer ≡ Dru
e = (I ⊗ I ⊗ D̂)ue = ΣN

l=0D̂ilu
e
qjk, (13)

ues ≡ Dsu
e = (I ⊗ D̂ ⊗ I)ue = ΣN

l=0D̂jlu
e
ilk, (14)

uet ≡ Dtu
e = (D̂ ⊗ I ⊗ I)ue = ΣN

l=0D̂klu
e
ijl, (15)

where I ∈ R(N+1)×(N+1) is the identity matrix. Differen-
tiation with respect to r, s, and t is the most compute-
intensive phase in advancing (9). All other steps involve only
O(N3) or O(N2) work and storage per element. For (9),
there are 12 derivatives in the curl operator in the physical
domain, ∂Hz

∂y −
∂Hy

∂z , ∂Hx

∂z −
∂Hz

∂x , ∂Hy

∂x −
∂Hx

∂y , ∂Ez

∂y −
∂Ey

∂z ,
∂Ex

∂z −
∂Ez

∂x , and ∂Ey

∂x −
∂Ex

∂y , involving 18 derivatives to be
computed in the reference domain using (13)–(15)—three
each for each of three components for E and H. The weak
form is completed by evaluating the inner product of the
curl operators with the test functions, which is effected by
pointwise multiplication of the integrand with the quadrature

weights wijk = ŵ(ξi)ŵ(ξj)ŵ(ξk), where ŵ(ξi) are the N +
1 GLL weights on [−1, 1].

The surface flux terms F(H,E) are sparse because of
the use of GLL quadrature, but they do require face-to-face
data exchanges between adjacent elements. The exchanges
involve (N + 1)2 words per face for each of the six
components.

OpenACC Implementation
Time advancement of (9) affords significant opportunities
for GPU-based parallelism. In this section, we describe our
OpenACC implementation for thread-based parallelism of
the essential kernels of the code, including the discrete
curl evaluation and the tuned gather-scatter kernel for the
nearest-neighbor data exchanges. Throughout the section,
we demonstrate pseudocodes that we used for performance
studies in the Algorithms, while describing pseudocodes
of older versions in the text. All operations are in double
precision.

Data Movement
In our OpenACC implementation, we assume one MPI rank
per GPU. Each MPI rank is pinned to a dedicated CPU core
that manages execution of its corresponding GPU device.
The CPU host initiates data transfer, sends code, passes
arguments to the region, waits for completion, and transfers
GPU results back to the CPU host. Figure 1 illustrates
the flowchart of our GPU-enabled version of NekCEM
using GPUDirect communication. The code begins with MPI
initialization on CPUs. MPI rank 0 reads the mesh data,
boundaries, connectivities, and parameters and redistributes
the data across the ranks on the fly. Each CPU core sets
geometric variables on the distributed mesh data and assigns
the field values at an initial time. Because GPU memory is
separate from CPU memory, the host CPU cores initiate all
data movement to the corresponding GPUs, a task that is
managed by the compiler according to OpenACC directives.
Before iterating our timestepping loop, we specify DATA
COPYIN for all the repeatedly used data to be moved
from the host CPU to the corresponding GPU. We specify
DATA CREATE for GPU-local arrays. The pseudocode in
Algorithm 1 demonstrates some of the OpenACC procedures
with the notation D= D̂ for the derivative operator and
w= wijk for the quadrature weights. Here, rx, ry,. . . , tz

Prepared using sagej.cls

4 Journal Title XX(X)

Algorithm 1 Data copy.

#ifdef OPENACC
!$ACC DATA COPYIN(D,w,H,E)
!$ACC& COPYIN(rx,ry,rz,sx,sy,sz,tx,ty,tz)
!$ACC& CREATE(u1r,u2r,u3r,u1s,u2s,u3s,u1t,u2t,u3t)
#endif

are time-invariant variables that hold the product of the
Jacobian (J) and the metrics, ∂r

∂x , ∂r
∂y , . . . ,

∂t
∂z , required to

map derivatives from the reference (r, s, t) domain to the
physical space (x, y, z) by using the chain rule.

Curl Evaluation
Note that we never explicitly form the matrix of
the discretized curl operator C. The requisite matrix-
matrix products (mxm) are instead effected through
direct operator evaluation based on Eqs. (13)–(15).
Algorithm 2 demonstrates a pseudocode for the subroutine
local curl grad3 acc that computes the derivatives of
(u1,u2,u3):=E and H on the reference domain. OpenACC
parallelism is split into gangs (thread blocks), workers
(warps), and vector elements (threads). OpenACC threads
use a hierarchy of memory spaces. Each thread has its
own private local memory, and each gang of workers
of threads has shared memory visible to all threads of
the gang. All OpenACC threads running on a GPU have
access to the same global memory. Global memory on
the accelerator is accessible to the host CPU (Cray Inc.
2012). In Algorithm 2, the OpenACC directives COLLAPSE
instruct the compiler to collapse the quadruply nested
loop into a single loop and then to chunk up that loop
into the most efficient parallel decomposition across the
streaming multiprocessors (GANG), collection of warps
(WORKER), and single-instruction multithreading (SIMT)
dimension (VECTOR). The collapsed outer loop is divided
into multiparallel chunks with SIMT vectors of length
128, where the default vector size is 128 because the
Kepler architecture has quad warp scheduler allowing four
warps (32 threads/warp) simultaneously. It is critical that
the innermost loop be performed in scalar mode. This
allows the nine scalar accumulators to be relegated to
registers, thus minimizing the data movement. In this routine
we specify !dir$ NOBLOCKING (Cray compiler-specific
Fortran directive) in the OpenACC directive to stop the
compiler from performing cache blocking on the multinested
loop. At this point in the compiler’s optimization, the
compiler does not know it is targeting an accelerator, and it
is thus blocking for effective cache utilization. This blocking
reduces the vector length on the accelerator; hence, this
compiler optimization should be inhibited.

We note that although portability is supported between
different compilers, the CCE (Cray Compiler Environment)
and PGI (The Portland Group, Inc.) compilers may deliver
different performance. One must pay attention to the
system environment or compiler-dependent directives in
order to get the best performance. As an example, Table 1
demonstrates the accumulated “ptime” timings of 104

repeated computations of the local curl grad3 acc
routine from different versions, using 1 GPU on Titan
for n = 125 · 153. The operation count for this routine is

Algorithm 2 Final tuned derivative operations.

local curl grad3 acc (Version 1)
ptime=dclock()

!$ACC DATA PRESENT(u1r,u1s,u1t,u2r,u2s,u2t,u3r,u3s,u3t)
!$ACC& PRESENT(u1,u2,u3,D)
!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR
!$ACC& private(tmp1 r,tmp2 r,tmp3 r)
!$ACC& private(tmp1 s,tmp2 s,tmp3 s)
!$ACC& private(tmp1 t,tmp2 t,tmp3 t)
!dir$ NOBLOCKING

do e = 1,E
do k = 1,N+1
do j = 1,N+1
do i = 1,N+1

tmp1 r = 0.0
tmp2 r = 0.0
tmp3 r = 0.0
tmp1 s = 0.0
tmp2 s = 0.0
tmp3 s = 0.0
tmp1 t = 0.0
tmp2 t = 0.0
tmp3 t = 0.0

!$ACC LOOP SEQ
do l=1,N+1

tmp1 r = tmp1 r + D(i,l) * u1(l,j,k,e)
tmp2 r = tmp2 r + D(i,l) * u2(l,j,k,e)
tmp3 r = tmp3 r + D(i,l) * u3(l,j,k,e)
tmp1 s = tmp1 s + D(j,l) * u1(i,l,k,e)
tmp2 s = tmp2 s + D(j,l) * u2(i,l,k,e)
tmp3 s = tmp3 s + D(j,l) * u3(i,l,k,e)
tmp1 t = tmp1 t + D(k,l) * u1(i,j,l,e)
tmp2 t = tmp2 t + D(k,l) * u2(i,j,l,e)
tmp3 t = tmp3 t + D(k,l) * u3(i,j,l,e)

enddo
u1r(i,j,k,e) = tmp1 r
u2r(i,j,k,e) = tmp2 r
u3r(i,j,k,e) = tmp3 r
u1s(i,j,k,e) = tmp1 s
u2s(i,j,k,e) = tmp2 s
u3s(i,j,k,e) = tmp3 s
u1t(i,j,k,e) = tmp1 t
u2t(i,j,k,e) = tmp2 t
u3t(i,j,k,e) = tmp3 t

enddo
enddo
enddo

enddo
!$ACC END PARALLEL LOOP
!$ACC END DATA

ptime=dclock()-ptime

Table 1. Accumulated (10,000 repeated) timings with GFlops
for CCE and PGI compilers for n = E(N + 1)3 with E = 125
and N = 14 on 1 GPU.

local curl grad3 acc CCE PGI
sec GFlops sec GFlops

Version 1 8.00 142 9.47 120
Version 2 16.76 68 9.00 126
Version 3 8.00 142 7.84 145

18(N + 1)n× 104. For the routine in Algorithm 2, referred
to as Version 1, CCE and PGI take 8.00 sec and 9.47
sec with 142 GFlops and 120 GFlops, respectively. During
these measures we unload the CrayPat module (performance
analysis tool on Titan) on the system to avoid potential
slowdown.

The timings for ACC DATA PRESENT are negligible,
with ∼10−4 sec for both compilers. On the other hand,
our local curl grad3 acc routine using OpenACC
directives KERNELS and LOOP COLLAPSE (shown as
Version 2 below) takes 16.76 sec at 68 GFlops with the CCE
compiler while taking 9.00 sec at 120 GFlops with PGI.

Prepared using sagej.cls

5

local_curl_grad3_acc (Version 2)

ptime = dclock()
!$ACC DATA PRESENT(u1r,u1s,u1t,u2r,u2s,u2t,u3r,u3s,u3t)
!$ACC& PRESENT(u1,u2,u3,D)
!$ACC KERNELS

do e = 1, E
!$ACC LOOP COLLAPSE(3)

do k = 1,N+1
do j = 1,N+1
do i = 1,N+1

tmp1_r = 0.0
tmp2_r = 0.0
tmp3_r = 0.0
tmp1_s = 0.0
tmp2_s = 0.0
tmp3_s = 0.0
tmp1_t = 0.0
tmp2_t = 0.0
tmp3_t = 0.0

!ACC LOOP SEQ
do l=1,N+1

tmp1_r = tmp1_r + D(i,l) * u1(l,j,k,e)
tmp2_r = tmp2_r + D(i,l) * u2(l,j,k,e)
tmp3_r = tmp3_r + D(i,l) * u3(l,j,k,e)
tmp1_s = tmp1_s + D(j,l) * u1(i,l,k,e)
tmp2_s = tmp2_s + D(j,l) * u2(i,l,k,e)
tmp3_s = tmp3_s + D(j,l) * u3(i,l,k,e)
tmp1_t = tmp1_t + D(k,l) * u1(i,j,l,e)
tmp2_t = tmp2_t + D(k,l) * u2(i,j,l,e)
tmp3_t = tmp3_t + D(k,l) * u3(i,j,l,e)

enddo
u1r(i,j,k,e) = tmp1_r
u2r(i,j,k,e) = tmp2_r
u3r(i,j,k,e) = tmp3_r
u1s(i,j,k,e) = tmp1_s
u2s(i,j,k,e) = tmp2_s
u3s(i,j,k,e) = tmp3_s
u1t(i,j,k,e) = tmp1_t
u2t(i,j,k,e) = tmp2_t
u3t(i,j,k,e) = tmp3_t

enddo
enddo
enddo

enddo
!$ACC KERNELS
!$ACC END DATA

ptime=dclock()-ptime

A third version (not shown), identical to Version 1 save that

!\$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR

is replaced by,

!\$ACC PARALLEL LOOP COLLAPSE(4)

takes 8.00 sec at 142 GFlops with CCE and 7.84 sec
at 145 GFlops with PGI. In the remaining sections,
all computational results are based on Version 1 of
local curl grad3 acc, shown in Algorithm 2. We used
the CCE compiler if the system supported CCE.

The routine curl acc in Algorithm 3 completes the
curl operation in the physical domain through application of
the chain rule and the quadrature weights. The OpenACC
directives are applied in a manner similar to that in
Algorithm 2.

Communication Kernel
We discuss here our tuned gather-scatter kernel, shown in
Algorithm 4, using vectorization, streaming, and GPUDirect.
Figure 2 demonstrates a schematic of data communication
in our SEDG framework, using a two-dimensional mesh for
simplicity. The mesh is distributed on two nodes, having
two elements on each node and four grid points on each
element face. The figure demonstrates the local data within

Algorithm 3 Final tuned curl volume integration operations.

curl acc
!$ACC DATA PRESENT(u1r,u1s,u1t,u2r,u2s,u2t,u3r,u3s,u3t)
!$ACC& PRESENT(w,rx,ry,rz,sx,sy,sz,tx,ty,tz)
!$ACC& PRESENT(curlU x,curlU y,curlU z)
!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR
do e = 1,E

do k = 1,N+1
do j = 1,N+1
do i = 1,N+1

curlU x(i,j,k,e)
= (u3r(i,j,k,e) * ry(i,j,k,e)

+ u3s(i,j,k,e) * sy(i,j,k,e)
+ u3t(i,j,k,e) * ty(i,j,k,e)
- u2r(i,j,k,e) * rz(i,j,k,e)
- u2s(i,j,k,e) * sz(i,j,k,e)
- u2t(i,j,k,e) * tz(i,j,k,e)) * w(i,j,k)

curlU y(i,j,k,e)
= (u1r(i,j,k,e) * rz(i,j,k,e)

+ u1s(i,j,k,e) * sz(i,j,k,e)
+ u1t(i,j,k,e) * tz(i,j,k,e)
- u3r(i,j,k,e) * rx(i,j,k,e)
- u3s(i,j,k,e) * sx(i,j,k,e)
- u3t(i,j,k,e) * tx(i,j,k,e)) * w(i,j,k)

curlU z(i,j,k,e)
= (u2r(i,j,k,e) * rx(i,j,k,e)

+ u2s(i,j,k,e) * sx(i,j,k,e)
+ u2t(i,j,k,e) * tx(i,j,k,e)
- u1r(i,j,k,e) * ry(i,j,k,e)
- u1s(i,j,k,e) * sy(i,j,k,e)
- u1t(i,j,k,e) * ty(i,j,k,e)) * w(i,j,k)

enddo
enddo
enddo

enddo
!$ACC END PARALLEL LOOP
!$ACC END DATA

Figure 2. Data pattern in SEDG framework: nonlocal data
exchange between nodes and local data within a node.

each node and the nonlocal data between nodes. Unlike the
continuous Galerkin approach, which has communication
patterns induced by face-to-face, vertex-to-vertex, and edge-
to-edge exchanges, the SEDG method requires only face-to-
face data exchanges. Each grid point is assigned a single
identifying integer, referred to as a global number. Grid
points on a face shared by different elements, representing
the same physical coordinates, have the same global number.
The NekCEM gather-scatter library gs lib provides a
black-box user interface that requires only this global
numbering.

Prepared using sagej.cls

6 Journal Title XX(X)

Vectorization These global numbers represent a map of the
data’s connectivity; the field values on the grid points with
the same global number need to communicate with each
other. In order to efficiently carry out this communication,
the global numbers are translated into a map, which is
constructed by listing groups of connected grid points
terminated by a -1. Our original gather-scatter kernel, written
for the CPU, was based on WHILE loops that search for
the terminator. This is shown below for the local-gather
operation.

for(k=0;k<vn;k++){
while ((i=*map++)!=-1){

t=u[i+k*dstride];
j=*map++;
do {
t += dbuf[j*vn];

} while((j=*map++)!=-1);
u[i+k*dstride]=t;

}
dbuf++;

}

Because we have six field (vn= 6) components, describing
electric and magnetic fields, sharing the same data
communication pattern on the same mesh geometry using
the same map, we store the values of −n×H and −n×E
in (4)–(5) defined on the faces of all the elements on each
node into a single array (u) with the length of (dstride)
for each field component. This local-gather operation can be
equivalently rewritten as follows, using for loops, which
was the first step in the transition to our tuned routines.

for(k=0;k<vn;++k){
for(i=0;map[i]!=-1;i=j+1){

t = u[map[i]+k*dstride];
for(j=i+1;map[j]!=-1;j++){
t += u[map[j]+k*dstride];

}
u[map[i]+k*dstride] = t;

}
}

The compilers are unable to vectorize the first for loop nest
because of using complex pointer arithmetic and loops with
an unknown length at the time of the loop start. The second
for loop-nest removes the troublesome pointer arithmetic,
but the unknown length still remains. In our GPU-enabled
Version, we precompute an additional array that stores extra
information about the map, including the index of the start of
a group and the length of a group. Our full communication
kernel uses four maps (map,snd map, rcv map, and
t map), provided with the number of groups in each
map (m nt, snd m nt, rcv m nt, t m nt), and their
corresponding index arrays (mapf, snd mapf, rcv mapf,
t mapf). For each map, the starting index of a group and the
length of the associated group are stored at mapf[i*2] and
mapf[i*2+1] (i = 0, 1, ...), respectively. As an example,
an arbitrary map representing connectivity is defined as

map[0:12]=[1, 8, 5, -1, 11, 6, -1, 32, 9, 17, 24, -1, -1].

The data corresponding to the group {1,8,5} are connected,
and the total number of groups is m nt= 3. The two
instances of “-1 -1” indicate the end of the map. In this case,
an index array for this map is

mapf=[0, 2, 4, 1, 7, 3],

where mapf[0]= 0, mapf[2]= 4, and mapf[4]= 7
indicate the starting index of the groups in map[0:12], and

mapf[1]= 2, mapf[3]= 1, and mapf[5]= 3 indicate
the length of the groups in map[0:12], subtracted by one.
We note that map and t map are related by a transpose, as
are snd map and rcv map.

Algorithm 4 shows a pseudocode of our tuned gather-
scatter kernel fgs fields acc using the map and
index arrays for the local-gather (map, mapf), global-
scatter (snd map, snd mapf), global-gather (rcv map,
rcv mapf), and local-scatter (t map, t mapf) procedures.
While the tuned gather-scatter kernel and the original
WHILE-based kernel have similar levels of performance on
the CPU, the tuned kernel is almost 100× faster than the
original on the GPU. The i loop is large and allows for
efficient use of the massive parallelism of the accelerator.

Streaming We stream the six field vectors in the array
(u) as shown in Algorithm 4. Note that each parallel
loop has an async(k+1) that allows all instances of the
for loop to run in parallel, since they are independent. An
#pragma acc wait is then used to synchronize all the
streams at the end of the loop, and then the next map is
similarly streamed. This approach allows multiple kernels to
be scheduled in order to amortize the latency of fetching the
operands in the kernels. When one stream stalls waiting for
an operand, another stream can proceed.

GPUDirect Gather-Scatter The gather routine involves an
addition operation, and the scatter routine involves a copy
operation. In the NekCEM gs lib, local data are first
gathered within each node. The nonlocal exchange is then
effected by the standard MPI Irecv(), MPI Isend(),
MPI Waitall() sequence, in order to allocate receive
buffers prior to sending data. After the MPI Waitall, the
received data is scattered to the elements.

MPICH2 allows GPU memory buffers to be passed
directly to MPI function calls, eliminating GPU data copy to
the host before passing data to MPI. Thus we use the normal
MPI Isend/MPI Irecv functions for internode data
transfer directly from/to the GPU memory using OpenACC
directives #pragma acc host data use device to
enable the GPUDirect. When the systems do not support
GPUDirect, we update the host with asynchronous GPU data
copies with pinned host memory by specifying async, as
shown in Algorithm 4. In a later section, we demonstrate the
performance on GPUs for both GPUDirect and GPUDirect-
disabled cases in comparison with that on CPUs.

We note that in this newly tuned gather-scatter kernel,
we have maintained the black-box nature of the com-
munication routine. Users need to call just a single For-
tran interface gs op fields. We have a runtime check
acc is present that determines whether to call the GPU-
enabled fgs fields acc or CPU-only fgs fields
kernel. If fgs fields acc is called, either GPUDirect or
GPUDirect-disabled is chosen by a user-determined prepro-
cessor compiler option for USE GPU DIRECT.

Before we ported our newly tuned gather-scatter kernel to
OpenACC, we had the local-gather operations computed on
GPUs, as shown below; moved the nonlocal data ug2 in the
size of nloc back to the host CPU; and used our original
CPU-only communication kernel gs op fields that
computes the global-gather and global-scatter procedures

Prepared using sagej.cls

7

(using the WHILE-based loop on CPU) and performs CPU-
to-CPU MPI communication. Then we copied the updated
ug2 back to the GPU device and proceeded with the local-
scatter operation.

do k = 0,vn-1
!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1)

do i=1,nglobal
!$ACC LOOP SEQ

do j = ids_ptr(i),ids_ptr(i+1)-1
il= ids_lgl1(j)
sil = k*n+il
if (i.le.nloc) then

sig = k*nloc+i
ug2(sig) = ug2(sig)+u(sil)

else
sig = k*n+i
ug (sig) = ug (sig)+u(sil)

endif
enddo

enddo
!$ACC UPDATE HOST(ug2(k*nloc+1:(k+1)*nloc)) ASYNC(k+1)

enddo
!$ACC WAIT

call gs_op_fields(gsh_face_acc,ug2,nloc,vn,1,1,0)

do k = 0,vn-1
!$ACC UPDATE DEVICE(ug2(k*nloc+1:(k+1)*nloc)) ASYNC(k+1)
!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1)

do i=1,nglobal
!$ACC LOOP SEQ

do j = ids_ptr(i),ids_ptr(i+1)-1
il = ids_lgl1(j)
sil = k*n+il
if (i.le.nloc) then

sig = k*nloc+i
u(sil)= ug2(sig)

else
sig = k*n+i
u(sil)= ug(sig)

endif
enddo

enddo
enddo

!$ACC WAIT
!$ACC END DATA

While this version is a tuned version of Gong’s previous
work (Markidis et al. 2015), it excludes accelerating global-
scatter and global-gather operations on the GPU and does
not support GPU-to-GPU MPI communication. In our
new kernel, we moved the local-gather and local-scatter
operations shown above into fgs fields acc as well
as added OpenACC to the global-scatter and global-gather
operations in a highly tuned form so that the full procedures
involving local/global gather/scatter operations all can be
performed on the GPU with GPU-to-GPU MPI Irec and
MPI Isend, while still providing a single black-box user
interface with gs op fields for either the GPU or CPU
runs.

Performance and Analysis
Table 2 demonstrates an overview of the systems used for
our performance tests. We note that Tesla and Maud are
local/institutional machines that were used for development
and baseline experiments. We present performance results
for the GPU- and CPU-based SEDG Maxwell solvers. We
also analyze their scalability and compare their relative
efficiencies under several different metrics including power
consumption. Timing runs were performed on the platforms
shown in Table 2 with E elements of polynomial order
N = 7 or N = 14. Timings are for 1,000 timesteps with all
I/O turned off during those steps.

Algorithm 4 A pseudocode: gather-scatter kernel.

fgs fields acc

//* (1) local gather *//
for(k=0;k<vn;++k){

#pragma acc parallel loop gang vector async(k+1)
for(i=0;i<m nt;i++){
t = u[map[mapf[i*2]]+k*dstride];

#pragma acc loop seq
for(j=0;j<mapf[i*2+1];j++) {
t += u[map[mapf[i*2]+j+1]+k*dstride];

}
u[map[mapf[i*2]]+k*dstride] = t;

}
}

#pragma acc wait

//* multiple messages multiple destinations *//
MPI Irecv(rbuf,len,DATATYPE,source,tag,comm,req);

//* (2) global scatter *//
for(k=0;k<vn;++k) {

#pragma acc parallel loop gang vector async(k+1)
for(i=0;i<snd m nt;i++){

#pragma acc loop seq
for(j=0;j<snd mapf[i*2+1];j++) {

sbuf[k+snd map[snd mapf[i*2]+j+1]*vn]
= u[snd map[snd mapf[i*2]]+k*dstride];

}
}

}
#pragma acc wait

#if USE GPU DIRECT
#pragma acc host data use device(sbuf)
//* multiple messages multiple destinations *//
MPI Isend(sbuf,len,DATATYPE,dest,tag,comm,req);
MPI Waitall(len,req,status);

#else
#pragma acc update host(sbuf[0:bl]) async
#pragma acc wait
//* multiple messages multiple destinations *//
MPI Isend(sbuf,len,DATATYPE,dest,tag,comm,req);
MPI Waitall(len,req,status);

#pragma acc update device(sbuf[0:bl]) async
#pragma acc wait

#endif

//* (3) global gather *//
for(k=0;k<vn;++k) {

#pragma acc parallel loop gang vector async(k+1)
for(i=0;i<rcv m nt;i++){

#pragma acc loop seq
for(j=0;j<rcv mapf[i*2+1];j++) {

u[rcv map[rcv mapf[i*2]]+k*dstride] + =
rbuf[k+rcv map[rcv mapf[i*2]+j+1]*vn];

}
}

}
#pragma acc wait

//* (4) local scatter *//
for(k=0;k<vn;++k) {

#pragma acc parallel loop gang vector async(k+1)
for(i=0;i<t m nt;i++){
t = u[t map[t mapf[i*2]]+k*dstride];

#pragma acc loop seq
for(j=0;j<t mapf[i*2+1];j++) {
u[t map[t mapf[i*2]+j+1]+k*dstride] = t;

}
}

}
#pragma acc wait

For all but the smallest single-node cases the domain
is a tensor-product of elements with periodic boundary
conditions. (The smallest cases are just a line of elements.)
Our domains are typically partitioned with recursive spectral
bisection. We did not monitor the number of connected ranks
for each MPI rank but it can be higher than six if the partition

Prepared using sagej.cls

8 Journal Title XX(X)

Table 2. Systems Overview

Cray XK7 Titan IBM BG/Q Vesta Tesla Maud
Processors AMD Opteron PowerPC A2 Intel Xeon Intel Xeon
Nodes # 18,688 2048 2 2

CPU cores # 299,008 32,768 32 32
16 cores/node 16 cores/node 16 cores/node 16 cores/node

CPU clock rate 2.2 GHz 1.6 GHz 2.0 GHz 3.4 GHz
Nvidia K20X Nvidia K20c Nvidia K40m

GPUs # 18,688 – 2 2
1 GPU/node – 1 GPU/node 1 GPU/node

GPU cores # per node 2,688 – 2,496 2,880
GPU clock rate 732 MHz 706 MHz 745 MHz

DRAM Bandwidth 51.2 GB/s 30 GB/s 51.2 GB/s 59.7 GB/s
GRAM Bandwidth 250 GB/s – 208 GB/s 288 GB/s

Peak (max) 27 PF 419 TF 512 GF 870 GF
Interconnect 3D torus 5D torus Direct Direct

Figure 3. Timings on different systems on 1 node using Cray
CCE and PGI compilers; n = 125...153 with 1,000 timesteps.

is a bit irregular. We note that NekCEM is designed for
unstructured domains, and thus no attempt has been made to
optimize for the stuctured domains used in the timing tests.

Figure 3 shows timings when E=125 elements of order
N=14 (n = 125 · 153). The bars contrast 1- and 16-core
results with those based on a single GPU. The GPU time is
lower than that for the 16-core case across all platforms. The
small systems (Tesla/Maud) support only the PGI compiler
(no GPUDirect support). We note that Maud does not show
significant speedup on the K40m GPU device in comparison
with its 16 cores, which run at 3.5 GHz. From a performance
perspective, the choice between a GPU or 16 cores on Maud
appears to be a tie that would need to be broken by price and
power considerations. On Titan, however, the GPU speedup
is significant, with a single GPU outperforming 16 cores by
a factor of 2.5.

To quantify the energy consumption of the CPU and GPU
versions of NekCEM, we collaborated with staff from the
Oak Ridge Leadership Computing Facility (OLCF) to obtain
power data from application runs on Titan. Specifically, we
ran a set of two-cabinet jobs (E,N) = (403, 14) (n = 216
million), while collecting energy use data for the CPU and

Figure 4. Power consumption on Titan using 2 cabinets (96
nodes per cabinet) with 18 kW when the system is idle; 1,000
timestep runs with n = 216M (E = 403 and N = 14).

GPU runs. Figure 4 shows the power consumption for each
of the two 192-node runs: one using 192 GPUs and the other
using 192×16 CPU cores. As seen in the figure, the GPU run
draws slightly more power during computation than the CPU
run does. Because the GPU finishes the computation faster,
however, it requires only 39% of the energy needed for 16
CPUs to do the same computation. We note that both the
GPU and the CPU runs are burdened with power load from
the unused resources, which makes it difficult to accurately
assess the impact of these results for other node architectures
having no attached GPU or fewer CPU cores. Nonetheless,
we note that the GPU runs do incur a power savings on Titan.

Next, we consider parallel performance for varying
problem sizes n and processor counts P (the number of
GPUs or CPU cores). Figures 5–6 show runtimes for varying
problem sizes n on OLCF’s Titan and on the BG/Q “Vesta”
at the Argonne Leadership Computing Facility (ALCF).
Graph (a) in each of the figures is GPU-based with MPI to
communicate using GPUDirect. Graphs (b) and (c) are based
on all-CPU implementations using MPI to communicate
between the P cores, with P = 1, 2, 4, . . . , 128.

Prepared using sagej.cls

9

(a) (b) (c)

Figure 5. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

(a) (b) (c)

Figure 6. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and N = 7.

To understand the data in Figures 5 and 6, we first note
that a column of dots corresponds to classic strong scaling.
As one moves down a vertical line, the problem size n is
fixed, and P doubles from curve to curve. On the other hand,
a row of dots corresponds to weak scaling. Starting from the
left and moving right, the processor counts and problem sizes
double. If the points are on the same horizontal line (i.e.,
have the same runtime), then we have perfect weak scaling,
as is the case for n/P > 105 in Figure 5(a). We see that the
largest problems (large, fixed, n) realize a twofold reduction
in solution time with each doubling of processor count over
the range of P considered. We have indicated a strong-scale
limit line where the strong-scale performance starts to fall
off when n/P is too small. For the GPU-only (i.e., P = 1)
case, the strong-scale limit corresponds to n/P ≈ 105 for
both the N = 7 and N = 14 cases. We note that the strong-
scale limit is not observed for the CPU-only cases (graphs (b)
and (c) in Figures 5–6). They continue to have good strong
scaling down to the point of one element per core, which is
the natural granularity limit for the SEDG formulation. Their
lower-bound runtime is thus set by the granularity-limit line
indicated in the plots.

We now focus on the single-GPU performance in
Figures 5(a) and 6(a), which involves no interprocessor
communication. Moving from right to left on the blue (GPU
1) curve, the number of elements decreases by a factor of 2
for each point. The time decreases linearly until n ≈ 105, at
which point there is insufficient work to saturate the GPU
work queue. Thus, even in the absence of communication,

Figure 7. Single-GPU performance on OLCF Titan, based on
1000 timestep runs with number of grid points n = E(N + 1)3

for N = 7 and 14, and varying E.

we can recognize that n/P ≈ 105 is an approximate lower
bound for effective utilization of the GPU. If we attempt to
strong-scale the problem at this size by increasing P from 1
to 2, say, then each GPU is moving away from its saturated
performance state because the local problem size is reduced.
To further quantify this behavior, we plot Gflop/s vs n for the
single-GPU case in Figure 7. An estimate of the flops rate
is derived from (9) and (10)–(15). The present simulations
use a 5-stage Runge-Kutta (RK) integrator to advance (9).

Prepared using sagej.cls

10 Journal Title XX(X)

Accounting for all six fields and for the few vector-vector
operations associated with each RK stage, the work per step
for E elements of order N is

W = 5×
[
36(N + 1)4 + 84(N + 1)3

]
E

= [180(N + 1) + 420]n. (16)

For example, the work per timestep is W ≈ 3120n for N =
14 andW ≈ 1860n forN = 7. This estimate is conservative
in that it does not account for the additional O(N + 1)2

terms associated with the flux-exchanges at the faces. For the
single-GPU case in Figure 7 with N = 7 and n = 4096×
(8)3, the wall-clock time for 1000 steps is 140 seconds,
which corresponds to a saturated peak of ≈ 28 Gflops. For
the same case withN = 14 and n = 1024× (15)3, the wall-
clock time is 230 seconds, corresponding to 48 Gflops. The
n1/2 values where the code realizes half of these peak values
are n1/2=33,308 and 34,525, respectively, for N=7 and 14.
The problem sizes must be large on each GPU to get close
to the (application-specific) realizeable peak. By contrast, no
such performance drop off (as n/P −→ 0) is observed in the
single-core CPU curves of Figures 5(b)-(c) or 6(b)-(c).

The multi-GPU cases for N = 14 and 7 exhibit slightly
different behaviors. For N = 14, each GPU has essentially
the same performance as the single-GPU case does. That is,
aside from the smallest value of n, each curve in Figure 5(a)
could be shifted to the left by a factor of P (corresponding to
the horizontal axis being n/P instead of n), and the curves
would be nearly on top of each other. This situation indicates
that communication overhead is not a significant factor in
the performance drop-off for the small-n limit. Rather, as
is evident from the P = 1 curve, it is the standard vector
start-up cost limitation that mandates the use of relatively
large problem sizes for the multi-GPU case. As is the
case with classic vector architectures, this overhead can be
characterized by n1/2, the value of n required to reach half
of the peak performance rate for this problem. A large n1/2

limits the amount of strong scaling that can be extracted from
a particular problem of fixed size, n. We note that although
communication overhead is absent in the N = 14 case, it is
evident in the N = 7 case (Figure 6(a)) where all the multi-
GPU curves are shifted above the GPU 1 curve in the small-n
limit. The importance of communication in this case follows
from the relative reduction in local workload, which is a
factor of (15/8)3 ≈ 8 times smaller than in theN = 14 case.

We next turn to the CPU results in Figures 5(b)–(c)
and 6(b)–(c) on Titan and Vesta. Here, we see generally good
weak-scaling behavior except that, in each case, the single-
core (P = 1) case is faster than the corresponding multicore
cases because of the absence of communication and lack of
contention for local memory resources. Also, on Vesta, there
is a significant step up moving from a single node (P ≤ 16)
to more than one node because of the added overhead of
internode communication. Aside from these one-time step-
ups, the strong scaling continues to be reasonable right
up to the fine-grained limit of E/P = 1. Thus, from an
efficiency standpoint, no penalty is incurred for running with
E/P=1 on P CPU cores. In particular, we note in comparing
Figures 6(a) and (b) that the all-CPU variant of Titan can run
the n = 105 faster than a multi-GPU case. At this granularity
limit, the all-CPU approach is fastest.

Figure 8. Timings on different number of GPUs for 1,000
timestep runs with n=E(N + 1)3, varying E with N=14.

Figure 9. Timings on different numbers of GPUs and CPUs for
1,000 timestep runs with n = 125 · 153 per node. 1 GPU and 16
CPU cores are used per node. Computation timings represent
total simulation time including the gather-scatter.

Figure 8 shows strong- and weak-scale performance on
up to 16,384 GPUs on Titan using GPUDirect-based MPI
communication. Here, the connected lines correspond to
strong scaling while the horizontal row of dots represents
weak-scaling performance. We observe ∼80% weak-scale
efficiency from 8 GPUs to 16,384 GPUs.

Figure 9 compares timings of GPU runs for the case of
n/P = 125 · 153 from Figure 8 with those of CPU runs, up
to 16,384 nodes (262,144 CPU cores) and with the equivalent
GPU runs without GPUDirect communication. The GPU
times for both GPUDirect and GPUDirect-disabled cases
demonstrate 2.5× speedup over the all-CPU runs for the
same number of nodes. We note that GPUDirect results
in a 4%∼12% performance gain over the GPU case with
GPUDirect disabled.

We also note that the all-CPU case in Figure 9 exhibits a
(repeatable) up-tick in communication overhead above 512
nodes. The cause of this is not clear, but one plausible
explanation is the amount of message traffic induced by
the large number (65,536 or 262,144) of MPI ranks in the
all-CPU case. We examined the accumulated gather-scatter
timings measured for the routine fgs fields acc. The

Prepared using sagej.cls

11

timing difference between the GPUDirect and GPUDirect-
disabled runs represents the data transfer time between
GPUs and CPUs within the gather-scatter routine. As for
the CPU-only runs on Titan, the gather-scatter timings
increase dramatically from 13% to 35% of the computation
times as the number of MPI ranks increase, while those
timings stay flat for the GPU-enabled version, having almost
perfect weak scaling up to 16,384 GPUs, with 33%∼46% of
computation times on GPU with GPUDirect and 36%∼53%
of computation times on GPU with GPUDirect disabled.

Table 3 shows the profile produced by Cray’s CrayPAT
profiling tool for 8-GPU runs with n/P = 125 · 155. The
columns display, respectively, the percentage of total time,
the wall clock time, the variation in times across the
MPI tasks, the percentage of variation, and the number
of occurrences of the program element. The OpenACC
operations are divided into the time to COPY data to and
from the device and the KERNEL time, which represents
the amount of time the host is waiting for the device to
complete the computation of the OpenACC kernel. If a
program element does not contain ACC, it is the time the
unit takes executing on the host. Ideally one would like
to have the time dominated by the times waiting for the
device execution and to have the COPY times minimized.
The profile shown in Table 3 is dominated by kernel times.
Although profiling increases the total computation time to
49.83 sec, compared with 35.40 sec without profiling, it
demonstrates that majority of the time is spent in the curl
evaluation, with 24% for the local curl grad3 acc
and curl acc routines. The second most significant portion
is spent in the communication routine, with 18% for the
fgs fields acc routine.

Conclusions
We have developed a fully functional and highly
tuned MPI/OpenACC version of the computational
electromagnetics code NekCEM. The implementation
covers all solution routines for NekCEM’s spectral-
element/discontinuous Galerkin (SEDG) discretization of
the time-dependent Maxwell equations, including tuned
element-by-element operator evaluation and an optimized
GPUDirect-based gather-scatter kernel to effect nearest-
neighbor flux exchanges. Performance results on up to
16,384 GPUs of the Cray XK7 supercomputer Titan show
more than 2.5× speedup over CPU-only performance on the
same number of nodes (262,144 MPI ranks) for problem
sizes of up to 6.9 billion grid points. This performance
is realized for problems having more than 100,000 points
per node. While the overall performance is respectable,
some significant GPU performance issues nonetheless do
limit scalability. In particular, the large n1/2, and not the
communication overhead, sets the strong-scale limit. We
note that there is room for further improvement in the
GPU-enabled version of NekCEM, including covering
communication costs with computation (which is relatively
easy) and the possibility of hybrid GPU/CPU computation
(with more effort).

A major conclusion from this effort is that one can
get reasonable performance for a full application using
OpenACC plus GPUs and that this is a promising avenue for

our much more complex (mutigrid-enabled, semi-implicit)
Navier-Stokes solver, Nek5000. The OpenACC-based GPU
algorithms and gather-scatter library discussed in this paper
can readily be extended or used directly for these and other
applications.

Acknowledgments
We thank Don Maxwell at OLCF for providing the power
consumption data and Matt Colgrove at PGI for helping with
timing tuning for PGI runs.

Funding
This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Contract DE-AC02-
06CH11357, and partially supported by the Swedish e-
Science Research Centre (SeRC). This research used
resources of the Oak Ridge Leadership Computing Facility
at Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. The research also used
resources of the Argonne Leadership Computing Facility,
which is supported by the U.S. Department of Energy, Office
of Science, under Contract DE-AC02-06CH11357.

References

Carpenter M and Kennedy C (1994) Fourth-order 2N -storage
Runge-Kutta schemes. NASA Report TM 109112 .

Cray Inc (2012) Cray Fortran Reference Manual. Cray Inc.
Deville M, Fischer P and Mund E (2002) High-order methods for

incompressible fluid flow, Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press.

Hesthaven J, Gottlieb S and Gottlieb D (2007) Spectral methods
for time-dependent problems, Volume 21 of Cambridge
monographs on applied and computational mathematics.
Cambridge University Press.

Hesthaven J and Warburton T (2008) Nodal discontinuous Galerkin
methods, algorithms, analysis, and applications. Springer.

Klöeckner A, Warburton T, Bridge J and Hestahven J (2009)
Nodal discontinuous galerkin methods on graphics processors.
Journal of Computational Physics 228: 7863–7882.

Markidis S, Gong J, Schliephake M, Laure E, Hart A, Henty
D, Heisey K and Fischer PF (2015) Openacc acceleration of
nek5000, spectral element code. International Journal of High
Performance Computing Applications : 1–9.

Medina DS, St-Cyr A and Warburton T (2013) Occa: a unified
approach to multi-threading. Under revision.

Min M and Fischer P (2011) An efficient high-order time integra-
tion method for spectral-element discontinuous Galerkin simu-
lations in electromagnetics. MCS, ANL, Preprint ANL/MCS-
P1802-1010.

Nvidia (2015) Developing a Linux kernel module using RDMA for
GPUDirect. Nvidia Corporation, TB-06712-001 v7.0.

openaccorg (2011) The OpenACC Application Programming
Interface. Openacc Inc., Version 1.0.

Taflove A and Hagness S (2000) Computational Electrodynamics,
The Finite Difference Time Domain Method. Artech House,
Norwood, MA.

Prepared using sagej.cls

12 Journal Title XX(X)

Table 3. CrayPAT profile on 8 GPUs; 1000 timestep runs with (E,N) = (1000, 14).

Table 1: Profile by Function Group and Function
Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 54.255936 | -- | -- | 1564223.4 |Total
|---
| 91.9% | 49.838669 | -- | -- | 1359683.0 |USER
||--
|| 15.3% | 8.283073 | 0.002307 | 0.0% | 10000.0 |local_curl_grad3_acc_.ACC_ASYNC_KERNEL@li.1476
|| 8.8% | 4.790874 | 0.001347 | 0.0% | 10000.0 |curl_acc_.ACC_ASYNC_KERNEL@li.1568
|| 7.3% | 3.979034 | 0.005755 | 0.2% | 30000.0 |rk4_upd_acc_.ACC_ASYNC_KERNEL@li.1470
|| 3.7% | 2.000398 | 0.001428 | 0.1% | 5000.0 |cem_maxwell_add_flux_to_res_acc_.ACC_ASYNC_KERNEL@li.1169
|| 3.2% | 1.711280 | 0.005003 | 0.3% | 30000.0 |fgs_fields_acc.ACC_ASYNC_KERNEL@li.490
|| 3.1% | 1.678558 | 0.007621 | 0.5% | 30000.0 |fgs_fields_acc.ACC_ASYNC_KERNEL@li.430
|| 3.0% | 1.644597 | 0.000371 | 0.0% | 5000.0 |cem_maxwell_invqmass_acc_.ACC_ASYNC_KERNEL@li.1284
|| 3.0% | 1.623351 | 0.004822 | 0.3% | 30000.0 |fgs_fields_acc.ACC_ASYNC_KERNEL@li.526
|| 2.9% | 1.588147 | 0.002331 | 0.2% | 30000.0 |fgs_fields_acc.ACC_ASYNC_KERNEL@li.550
|| 2.1% | 1.115909 | 0.001834 | 0.2% | 5000.0 |cem_maxwell_restrict_to_face_acc_.ACC_ASYNC_KERNEL@li.896
|| 2.0% | 1.105743 | 0.001329 | 0.1% | 15000.0 |chsign_acc_.ACC_ASYNC_KERNEL@li.2364
|| 2.0% | 1.077413 | 0.003511 | 0.4% | 5000.0 |fgs_fields_acc.ACC_DATA_REGION@li.419
|| 1.9% | 1.036148 | 0.000405 | 0.0% | 5000.0 |cem_maxwell_flux3d_acc_.ACC_ASYNC_KERNEL@li.1108
|| 1.8% | 0.997496 | 0.001525 | 0.2% | 5000.0 |pw_exec_sends_acc.ACC_COPY@li.178

Author biographies

Matthew Otten is a Ph.D. candidate in the Department of
Physics at Cornell University, with a minor in computer
science. Otten worked as a Givens Associate in 2014 at the
Mathematics and Computer Science Division at Argonne
National Laboratory and has been a co-op student at Argonne
since then. His research focuses on developing scalable
algorithms for solving complex quantum systems.

Azamat Mametjanov is a postdoctoral associate in the
Mathematics and Computer Science Division at Argonne.
He received his Ph.D. from the University of Nebraska
at Omaha in 2011. His research focuses on performance
characterization and optimization of codes for modern
architectures using automated program transformation
techniques.

Jing Gong completed his Ph.D. in scientific computing
on Hybrid Methods for Unsteady Fluid Flow Problems in
Complex Geometries at Uppsala University in 2007. He
also holds an M.Sc. in scientific computing from the Royal
Institute of Technology (KTH), Stockholm, and an M.Eng.
in mechatronics from Beihang University, Beijing, China.
He joined the PDC Center for High Performance Computing
at KTH as a researcher in computational fluid dynamics in
January 2012.

Aaron Vose is an HPC software engineer at Cray’s
Supercomputing Center of Excellence at Oak Ridge National
Laboratory. Vose helps domain scientists at ORNL port and
optimize scientific software to achieve maximum scalability
and performance on world-class HPC resources, such as the
Titan supercomputer. Prior to joining Cray, Vose spent time
at the National Institute for Computational Sciences as well
as the Joint Institute for Computational Sciences, where he
worked on scaling and porting bioinformatics software to
the Kraken supercomputer. Vose holds a master’s degree
in computer science from the University of Tennessee at
Knoxville.

John Levesque is the director of Cray’s Supercomputing
Center of Excellence for the Trinity system based in Los
Alamos National Laboratory. He is responsible for the
group performing application porting and optimization for

break-through science projects. Levesque has been in high-
performance computing for 45 years. Recently he was
promoted to Cray’s Chief Technology Office, heading the
company’s efforts in application performance.

Paul Fischer is a professor in the Department of Computer
Science and Mechanical Science and Engineering at UIUC.
Prior to that, he had been at Argonne from 1998 to 2014
and a faculty member at Brown University from 1991 to
1998. He received his Ph.D. in mechanical engineering from
MIT in 1989 and was a postdoctoral associate in applied
mathematics at Caltech in 1990-1991. Fischer received the
first Center for Research on Parallel Computation Prize
Fellowship from Caltech in 1990 and the Gordon Bell Prize
for High-Performance Computing in 1999. He was elected as
a Fellow of the American Association for the Advancement
of Science (AAAS) in 2012 for technical contributions to
computational fluid dynamics on extreme-scale computers.

Misun Min is a computational scientist at Argonne National
Laboratory. She received her Ph.D. from Brown University
in 2003. After a postdoctoral research position at Argonne,
she joined the Mathematics and Computer Science Division
as an assistant computational scientist and was promoted
to computational scientist in 2011. Her research focuses on
developing numerical algorithms based on high-order spatial
and time discretizations for solving electromagnetics and
quantum systems. She is the designer and developer of the
computational electromagnetics solver package NekCEM.

Prepared using sagej.cls

13

The following paragraph should be deleted before
the paper is published: The submitted manuscript has
been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

Prepared using sagej.cls

